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DRats exposed to early life stress are considered as a valuable model for the study of

epigenetic programming leading to mood disorders and anxiety in the adult life. Rats
submitted to prenatal restraint stress (PRS) are characterized by an anxious/depressive
phenotype associated with neuroadaptive changes in the hippocampus. We used the
model of PRS to identify proteins that are specifically affected by early life stress. We
therefore performed a proteomic analysis in the hippocampus of adult male PRS rats. We
found that PRS induced changes in the expression profile of a number of proteins,
involved in the regulation of signal transduction, synaptic vesicles, protein synthesis,
cytoskeleton dynamics, and energetic metabolism. Immunoblot analysis showed
significant changes in the expression of proteins, such as LASP-1, fascin, and prohibitin,
which may lie at the core of the developmental programming triggered by early life stress.

© 2011 Elsevier B.V. All rights reserved.
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R1. Introduction

The low discordance of depression between monozygotic
twins and the slow progress in identifying genetic risk factors
suggest that epigenetic changes largely contribute to the indi-
viduals’ vulnerability to major depressive disorder [1]. Both
human and animal studies suggest that exposure to stressful
events during critical periods of brain development triggers an
epigenetic programming leading to low resilience to stress in
the adult life [2–8]. Abnormalities of synaptic transmission
and plasticity in the hippocampus represent an integral part
of this epigenetic program. For example, early life stress
resulting from low maternal care in rodents causes a perma-
nent reduction in the length of dendritic branching and the
number of dendritic spines associated with an impairment
f Lille, Neuroplasticity Tea
neuve d'Ascq France. Tel
v-lille1.fr (S. Morley-Fletc

r B.V. All rights reserved.

al, Proteomic characteri
of synaptogenesis and long-term potentiation in the hippo-
campus [9–11]. This fits nicely with the clinical evidence that
poor parental care can compromise cognitive development
[12,13].

Rats exposed to prenatal restraint stress (PRS) develop
long-lasting biochemical and behavioral changes that likely
reflect the induction of a pathological epigenetic program-
ming [14,15], and therefore represent a model that meets the
criterium of construct validity because it replicates environ-
mental factors implicated in the etiology of depression and
other stress-related disorders [1]. Alterations induced by PRS
comprise a dysfunction of the hypothalamo-pituitary-adrenal
(HPA) axis which is reversed by cross fostering at birth [16], a
generalized disorganization of circadian rhythms and the
sleep–wake cycle, an age-dependent impairment in spatial
m, CNRS UMR 8576/ UGSF, Structural and Functional Glycobiology
.: +33 32033 6042; fax: +33 32043 6555.
her).

zation in the hippocampus of prenatally stressed rats, J Prot
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learning, a lifelong reduction of hippocampal neurogenesis, and
changes in the levels of brain-derived neurotrophic factor
(BDNF), cyclic-AMP responsive element binding protein (CREB),
and group-I and group-II metabotropic glutamate receptors in
the hippocampus [16–20]. Remarkably, some of these changes
are reversed by chronic antidepressant treatment [21–23].
Hence, the ratmodel of PRS isparticularly valuable for a system-
atic analysis of hippocampal proteins that are the product of the
epigenetic programming leading to a low resilience to stress
and to an anxious/depressive phenotype in the adult life.
Here, we examined the protein expression profile in the hippo-
campus of adult rats exposed to PRS by using a proteomic ap-
proach based on the use of two-dimensional electrophoresis
coupled with mass spectrometry.
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2. Materials and methods

2.1. Animals

Nulliparous female Sprague–Dawley rats, weighing approxi-
mately 250 g, were purchased from a commercial breeder
(Harlan). Animals were housed at constant temperature
(22±2 °C) and under a regular 12 h light/dark cycle (lights
on at 8.00 a.m.). Pregnant females were randomly assigned
to stressed or control groups (n=12 per group).

2.2. Stress protocol

Animals were subjected to PRS according to our standard pro-
tocol [16,21]. From day 11 of pregnancy until delivery, pregnant
female ratswere subjected to three stress sessions daily (45 min
each), duringwhich they were placed in transparent plastic cyl-
inders and exposed to bright light. Onlymale offspring from lit-
ters containing 10–14 pupswith a comparable number ofmales
and females were used for the experiments. All experiments
followed the rules of the European Communities Council Direc-
tive 86/609/EEC. The prenatal stress procedurewas approved by
the local ethical committee.

2.3. Protein sample preparation and 2D analysis in the
hippocampus

Hippocampi of PRS and control rats (n=6/group) were rapidly
dissected, frozen on dry ice and stored at −80 °C. Samples
were then homogenized with a glass/Teflon homogenizer at
a concentration of 10% (w/v) in a solubilizing solution contain-
ing: 7 M urea (Sigma-Aldrich, St. Louis, MO, USA), 2 M thiourea
(Fluka, Buchs, Switzerland), 40 mM Tris (Sigma-Aldrich), 2%
CHAPS (Fluka), and Complete™ protease inhibitor (Roche,
Basel, Switzerland). Samples were sonicated three times for
10 s on ice with an ultrasonic processor with probe (Ultrasonic
2000, Dynatech Laboratories Inc., Chantilly, VA, USA). The ex-
tract was centrifuged at 1000 g and the pellet discarded. An al-
iquot of this supernatant was used to measure protein
concentration by the Bradford method [24]. 100 μg of proteins
was separated by 2D electrophoresis following a step of pas-
sive rehydration on 18 cm immobilized pH gradient strips
(IPG; non-linear pH gradient of 3–10, GE Healthcare, France)
overnight. Focusing was carried out for 24 h at 20 °C for a
Please cite this article as: Mairesse J, et al, Proteomic characteri
(2012), doi:10.1016/j.jprot.2011.12.017
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total of 100,000 Vh on a pHaser isoelectric focusing system
(Genomic solutions, Cambridgeshire, UK). The focused IPG
strips were equilibrated for 20 min with gentle shaking in an
equilibration solution (6 M urea, 2% SDS, 375 mM Tris pH 8.8,
30% glycerol) containing 1% DTT, and then with 2% iodoaceta-
mide. The strips were applied to 10% SDS polyacrylamide gels
using the Investigator System (Genomic Solutions), and finally,
2D gelswere silver-stained. For each animal, 2-D gel electropho-
resis was performed in triplicates for a total of 36 gels.

Electrophoresis images of gels were digitized using the GS-
710 densitometer system (Bio-Rad). 2D gel analysis was car-
ried out with Progenesis SameSpots software (Nonlinear Dy-
namics, Ltd).

2.4. Statistics

The aligned images were grouped into their corresponding
PRS or control group and the statistically ranked list of spots
was evaluated in the review stage of the SameSpots software.
Protein levels were evaluated as volumes (spot area×optical
density) for the protein spots matched among gels. Spot vol-
ume for valid spots was normalized to total density for each
gel. Our criteria for evaluation of protein spots were based
on an ANOVA p-value<0.05 as calculated with the built-in sta-
tistical tools in the software and a minimum of 1.5-fold inten-
sity (normalized volume) in protein content between PRS and
control animals. Then, only spots within the range of 1.5–3.5
fold change were cut out (24 spots) and processed for LC–MS/
MS analysis.

2.5. Protein identification with LC–MS/MS

The gel with the highest spot intensity was selected for man-
ual excision for evaluation by mass spectrometry. Spots of in-
terest were carefully cut from the gel, destained in a solution
containing 1.6% thiosulfate and 1% potassium ferricyanide,
extensively washed in water, and then submitted to in-gel
trypsin digestion. Briefly, after reduction and alkylation, tryp-
sin digestion was performed overnight at 37 °C in 25 mM am-
monium bicarbonate (porcine mass spectrometry grade MSG-
Trypsin; G-Biosciences, Agro-Bio, La Ferté St Aubin, France).
Peptides were extracted in 45% acetonitrile/45%water/10% tri-
fluoroacetic acid (TFA) (v/v/v) and then dried in a speed-vac
(Eppendorf) before nano-high pressure liquid chromatography
(HPLC)–MS/MS analysis. NanoLC-NanoESI–MS/MS analyses
were performed either on an ion trap mass spectrometer (LCQ
Deca XP+, Thermoelectron, San Jose, CA) equipped with a
nano-electrospray ion source coupled to a nano-flow high-
pressure liquid chromatography system (LC Packings Dionex,
Amsterdam, The Netherlands) as previously described [25], or
on an hybrid quadrupole time-of-flight mass spectrometer (Q-
Star, Applied Biosystems, Foster City, California, USA) equipped
with a nano-electrospray ion source coupled with a nano HPLC
system (LC Packings Dionex, Amsterdam, The Netherlands).
Peptidic samples were dissolved in 5 μL 95% H2O/5% ACN /
0.1% HCOOH (v/v/v) (solvent A) and were injected into the
mass spectrometer using the Famos auto-sampler (LC Packings
Dionex, Amsterdam, The Netherlands). Samples were desalted
and concentrated on a reserved-phase precolumn of 0.3 mm
i.d.×5 mm (Dionex) by solvent A delivered by the Switchos
zation in the hippocampus of prenatally stressed rats, J Prot
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pumping device (LC Packings Dionex), at a flow rate of 10 μL/
min for 3 min. Peptides were then separated on a 75 μm
i.d.×15 cm C18 Pepmap column (Dionex). The flow rate was
set at 200 nL/min. Peptides were eluted using a 0% to 35% linear
gradient of solvent B (25% H2O/75% ACN/0.1% HCOOH) in
80min then a 35% to 100% linear gradient of solvent B in
10min and finally 100% of solvent B was maintained for
5 min. Coated electrospray needles were obtained from New
Objective (Woburn, Massachusetts, USA). The spray voltage
was 1.65 kV. The mass spectrometer was operated in the posi-
tive ion mode. Data acquisition was performed in a data-
dependent mode consisting of, alternatively, a full-scan MS
over the range m/z 300–2000, and a full-scan MS/MS of the ion
selected over the range m/z 50–2000 in an exclusion dynamic
mode (themost intense ion is selected and excluded for further
selection for a duration of 30 s). MS/MS data were acquired
using a mass tolerance of 50mmu and the collision energy
was automatically fixed by the device. For the automated data-
base search of fragment ion spectra, the Analyst QS software
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Fig. 1 – (A) Representative 2D gel image with spots of proteins list
the identified proteins regulated by PRS in the adult hippocampu
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and Mascot dll script were used and final database searching
was performed using Mascot software (Matrix Science London,
UK, MS/MS ion search module), in the Swiss-Prot database
(Sprot 0411, 525,207 sequences). Search parameters were as fol-
lows: Rattus as the taxonomic category, 100 ppm tolerance for
the parent ion mass and 50mmu for the MS/MS fragment
ions, one missed cleavage allowed, carbamidomethylcysteine
as a fixedmodification, andmethionine oxidation as a possible
modification. Only proteins with a significant Mascot score
were taken into consideration and reported aftermanual verifi-
cation of the fragmentation spectra.

2.5. Western blot validation of identified proteins

A separate set of animals was used for immunoblotting exper-
iments. Four to six animals per group were analyzed in dupli-
cate. Rats were killed by decapitation and brains rapidly
removed; hippocampi (dorsal and ventral where described)
were dissected and stored at −80 °C until homogenization.
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ed in Table 1 in the 3–10 pH range. (B) Functional clustering of
s.

zation in the hippocampus of prenatally stressed rats, J Prot
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Tissues were homogenized at 4 °C with a TissueRuptor (Quia-
gen) in lysis buffer (pH 7.4) containing: 320 mM Sucrose, 5 mM
Hepes, 500 mM sodium fluoride, 10% SDS and phosphatase/
protease inhibitor (Sigma). BCA assay was used to determine
protein concentration. Lysates were resuspended in laemli re-
ducing buffer and 25 μg of each sample was first separated by
electrophoresis on 8–12% SDS-polyacrylamide gels and sud-
denly later transferred to nitrocellulose membranes (Biorad).
Transferring was performed at 4 °C in a buffer containing
35 mM TRIS, 192 mM glycine and 20% methanol.

The following primary antibodies were used to detect the
relevant proteins: anti-Prohibitin (Thermo Scientific; 1:1000),
anti-LASP-1 (Millipore; 1:1000), anti-Fascin (Santa Cruz; 1:2000),
anti-Transferrin (AbCam; 1:5000), anti-β-Actin (Sigma; 1:80000).
Secondary antibodies directed against rabbit or chicken were
used at 1:10,000 dilution. Densitometric analysis was performed
with Quantity One software (Bio-Rad) associated to a GS-800
scanner. A ratio of target to β-Actin was determined and these
values were compared for statistical significance with the Stu-
dent's t-test.
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Fig. 2 – Immunoblot analysis of fascin, prohibitin, transferrin,
and LASP-1 in the hippocampus of control and PRS adult
rats. Values are means+S.E.M. of 6 biological replicates.
*p<0.05 vs. controls.
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3. Results

3.1. PRS altered the hippocampal proteome

To identify novel proteins modified by PRS we compared the
proteome in the hippocampus of adult male PRS and control
rats. Analysis of two-dimensional electrophoresis patterns
by using Progenesis SameSpots Software revealed that the
densities of 24 spots were significantly different (p<0.05) be-
tween control and PRS rats.

Among them, 18 spots with a 1.5–3.5 fold change shown on
a gel in Fig. 1A, were unambiguously identified as known pro-
teins by nanoLC–tandem mass spectrometry. A total of 26 dif-
ferent identified proteins were thus sorted into the following 5
groups based on their biological function: (i) signal transduc-
tion; (ii) synaptic vesicles; (iii); protein synthesis (iv) cytoskel-
eton dynamics; and (v) energetic metabolism (Fig. 1B). These
proteins are listed in Table 1 and Supplemental Table 1. We
identified up to 6 different proteins per regulated spot in
some cases, due to possible overlapping protein spots in the
wide pH 3–10 range. The image analysis identified spots 3
and 9 as being up-regulated by PRS whereas all the other
spots were found to be down regulated. We could identify
mainly soluble and cytosolic proteins. It is therefore likely
that many other changes remained undetected, particularly
those involving low abundant proteins, or more hydrophobic
and high molecular weight proteins.

3.2. Immunoblotting validation of proteomic data

In order to confirm proteomic data in the hippocampus, the
expression of proteins previously identified within the regu-
lated spot were examined by immunoblot analysis in a sepa-
rate set of animals (Fig. 2). We found that PRS decreased the
expression of Lasp-1 (spot no. 13; F(1,8)=7.73, p<0.05) and in-
creased the expression of transferrin (spot no. 3; F(1,8)=
10.21, p<0.05), prohibitin (spot no. 9; F(1,8)=13.19, p<0.05),
and fascin (spot no. 19; F(1,8)=6.16, p<0.05). The increase in
Please cite this article as: Mairesse J, et al, Proteomic characteri
(2012), doi:10.1016/j.jprot.2011.12.017
Ethe expression of fascin could appear discordant with the gen-
eral down regulation profile of spot 19, as revealed by MS/MS
analysis. However, fascin accounts for the 30% only of the
peptides mixture if we take into account the fifteen different
sequences of peptides identified within the spot. The decrease
in intensity of spot 19 observed in the comparative analysis of
2D-gels may thus come from the other identified candidates.
4. Discussion

This study applied for the first time a proteomic approach to
the rat model of PRS that recapitulates some of the features
of stress-related disorders in humans [14,15]. This model is
valuable for the study of the pathological epigenetic program-
ming induced by stressful events occurring early in life (see
Introduction and references therein). We found that PRS al-
tered the expression profile of several hippocampal proteins,
including proteins involved in signal transduction, intracellu-
lar trafficking and membrane fusion of synaptic vesicles. In-
terestingly, some of the proteins modified by PRS such as
synapsin 2, LASP 1 and prohibitin, are known to be glucocorti-
coid regulated. This is relevant because PRS rats present an in-
creased secretion of glucocorticoid in response to stress [16].
Indeed, inactivation of glucocorticoid receptor in the hippo-
campus reduces levels of synapsins in mice (2-), and acute
corticosterone treatment enhances Lim family proteins [27],
among which there is LASP1 , a dynamic focal adhesion pro-
tein involved in mechanisms of cell migration and survival
[28,29]. Prohibitin also was modified by PRS. Such protein is a
membrane-bound chaperone which inhibits DNA synthesis
and has been implicated in aging, mitochondrial inheritance
zation in the hippocampus of prenatally stressed rats, J Prot
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Table 1t1:1 – Selected list of proteins whose expression was modified in the hippocampus of PRS rats. Proteins were separated
by 2D electrophoresis, and nano-LC–MS/MS analysis was performed after trypsin digestion on silver-stained spots. The
biological function of the identified proteins is indicated based on gene ontology. Accession number, entry name, and
theoretical MW and pI are indicated, according to the UniProtKB database on the Expasy server. For each candidate, the
Mascot score and the number of matched peptides obtained from theMS/MS ion Searchmodule (Mascot) are indicated. Spot
numbers are reported according to Fig. 1A. (*) Synapsin-2 and vesicle-fusing ATPase proteins have been identified in spot
nos. 39 and 50 (see Suppl Table 1). The higher score obtained for each of these candidates is reported here.

t1:2
t1:3 Spot Biological

process
Protein name Entry

name
Accession MW

Kda
pI Mascot

score
Peptides

t1:4 Signal transduction
t1:5 19 CaMK2 KCC2A P11275 54 6.6 62 1
t1:6 13 Phytanoyl CoA hydroxylase interacting protein PHYYIP Q568Z9 38 6.5 134 2
t1:7 Synaptic vesicles
t1:8 39 Synapsin-2(⁎) SYN2 Q63537 63 8.73 78 1
t1:9 26 Synaptosomal-associated protein 25 SNAP25 P60881 23 4.66 235 8
t1:10 3 Syntaxin binding protein 1 STXB1 P61765 68 6.49 161 4
t1:11 Protein synthesis
t1:12 9 Prohibitin PHB P67779 29 5.5 191 5
t1:13 50 Elongation factor 1-alpha 1 EF1A1 P62630 50 9.10 67 1
t1:14 19 T-complex protein1 beta subunit TCPB Q5XIM9 57 6.01 89 2
t1:15 19 F-box/LRR-repeat protein 16 FXL16 Q5MJ12 52 6.1 147 3
t1:16 Cytoskeleton

dynamics
t1:17 19 Fascin FSCN_1 P85845 55 5.8 169 5
t1:18 13 LASP-1 LASP1 Q99MZ8 30 6.5 64 2
t1:19 15 Dihydropyriminidase-like2 DPYL2 P47942 62 5.9 321 8
t1:20 24 Guanine nucleotide-binding protein G(olf) subunit alpha GNAL P38406 45 6.23 39 1
t1:21 50 Vesicle-fusing ATPase(⁎) NSF Q9QUL6 83 6.55 51 3
t1:22 17 Mitochondrial import receptor subunit TOM70 TOM70 Q75Q39 68 7.4 117 3
t1:23 Energetic

metabolism
t1:24 3 Transferrin TRFE P12346 78 7.14 121 3
t1:25 10 Phosphomannose isomerase PMI Q68FX1 47 5.7 187 4
t1:26 1 6-phosphofructokinase type C K6PP P47860 86 6.95 175 5
t1:27 10 Adenosine kinase ADK Q64640 40 5.7 66 2
t1:28 29 ATP synthase subunit gamma, mitochondrial ATPG P35435 30 8.87 37 2
t1:29 23 Glucose-6-phosphate 1-dehydrogenase G6PD P05370 60 5.97 64 3
t1:30 24 Isocitrate dehydrogenase [NAD] subunit alpha IDH3A Q99NA5 40 6.47 247 7
t1:31 29 Nitrilase homolog 2 NIT2 Q497B0 31 6.9 41 2
t1:32 20 Pyruvate kinase isozymes M1/M2 KPYM P11980 58 6.63 521 18
t1:33 19 Succinate-semialdehyde-deydrogenase SSDH P51650 56 8.3 97 2
t1:34 19 Tryptophanyl-tRNA-ligase SYWC Q6P7B0 54 6.0 145 2

5J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 2 ) X X X – X X X
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Oand apoptosis (for review see Ref. 30). The increment of prohi-

bitin induced by PRS is in line with other reports about in-
creased probitin levels after glucocorticoids exposure during
early postnatal life such asmaternal separation [31] or chronic
stress (restraint) in adult life [32]. Thus, we provide the first
evidence that in utero exposure to stress persistently affects
the expression in the hippocampus of proteins from different
functional categories, which are known to be regulated by
stress and/or glucocorticoids. This observation underlines
the putative involvement of the early exposure to glucocorti-
coids in the permanent modification of the hippocampal pro-
teome in the PRS model.

PRS also increased expression of Fascin, an actin-bundling
protein that lies downstream of the GTP-binding protein,
Rab35, in the regulation of cytoskeleton dynamics and forma-
tion of filopodia and growth cones [33,34]. The fascin-
encoding gene, FSCN1, is positively regulated by CREB and is
induced during neuronal differentiation of NT2 precursor
cells [35]. In addition, fascin is up-regulated in neuroectoder-
mal spheres derived from human embryonic stem cells, and
Please cite this article as: Mairesse J, et al, Proteomic characteri
(2012), doi:10.1016/j.jprot.2011.12.017
is highly expressed in the subventricular zone of the fetal
mouse brain [36]. These data suggest that fascin coordinates
cytoskeletal changes associated with neuronal differentia-
tion, although the precise role of this protein in the adult hip-
pocampal neurogenesis remains to be determined. PRS rats
showed an increased expression of fascin in spite of the ob-
served reduction of phospho-CREB levels and neurogenesis
in the hippocampus [18,20,23]. In contrast, fascin is down-
regulated in the ventral hippocampus of normal rats treated
with the antidepressant, escitalopram [30]. Perhaps fascin
acts as a negative regulator of adult neurogenesis and anti-
depressants enhance neurogenesis by reducing the expres-
sion of fascin. This interesting hypothesis warrants further
investigation.

A number of proteins involved in cellular metabolism were
modified by PRS. One examplewasphosphomannose isomerase,
a key enzyme in the biosynthetic pathway of N-glycosylprotein
[37]. Protein glycosylation critically regulates different aspects of
neuronal function including synaptic plasticity [38], and has
been implicated in the pathophysiology of neurodegenerative
zation in the hippocampus of prenatally stressed rats, J Prot
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disorders [39,40]. However, inactivating mutations of phospho-
mannose isomerase causes the congenital disorder of glycosyla-
tion type Ib, in which the CNS is not affected [41,42]. Thus, the
precise relationship between phosphomannose isomerase and
thepathological phenotypeof PRS rats remains to bedetermined.
Other identified proteins were 6-phosphofructokinase, pyruvate
kinase and glucose-6-phosphate dehydrogenase, three enzymes
involved in glucose utilization and energeticmetabolism that are
activated by insulin [43,44]. Changes in the expression of the
three enzymes could contribute to the development of insulin re-
sistance and altered glucosemetabolism seen in PRS rats [45,46].
A decreased energetic metabolism is expected in light of the de-
pressive phenotype and the negative resilience to stress exhib-
ited by PRS rats [14,15,47].

In conclusion, our data offer the first evidence that PRS in-
duces long-lasting changes in the expression profile of hippo-
campal proteins that likely reflect a pathological epigenetic
program triggered in the perinatal life. Anxiety generated by
restraint stress in pregnant mothers [48] might influence
brain development during the fetal life as a result of malnutri-
tion or excessive exposure to maternal corticosteroids [49]. Al-
ternatively, the epigenetic misprogramming of PRS rats can be
the consequence of the low maternal care in the first week of
postnatal life induced by gestational stress (personal observa-
tions from the laboratory). The latter hypothesis is more likely
because there is compelling evidence that low maternal care
causes permanent changes in gene function and behavior in
the offspring [2,7,50], and cross-fostering, which increased
maternal care, prevents at least the abnormal HPA response
to stress induced by PRS in particular on MR and GR hippo-
campal receptors [16]. Changes in hippocampal proteins
seen in PRS rats may facilitate the identification of novel mo-
lecular processes and candidate genes involved in the regula-
tion of the stress response and in the pathophysiology of
mood disorders.
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